FP2 Paper 6 |*adapted 2006 JAN

- 1. Find the set of values of x for which $\frac{x^2}{x-2} > 2x$. (Total 6 marks)
- **2.** (a) Find the general solution of the differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = 0.$$
 (4)

- (b) Given that x = 1 and $\frac{dx}{dt} = 1$ at t = 0, find the particular solution of the differential equation, giving your answer in the form x = f(t).
- (c) Sketch the curve with equation x = f(t), $0 \le t \le \pi$, showing the coordinates, as multiples of π , of the points where the curve cuts the *x*-axis.

(4)(Total 13 marks)

(5)

3. (a) Show that the substitution y = vx transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x - 4y}{4x + 3y} \qquad \text{(I)}$$

into the differential equation

$$x\frac{dv}{dx} = -\frac{3v^2 + 8v - 3}{3v + 4} \quad \text{(II)}.$$

- (b) By solving differential equation (II), find a general solution of differential equation (I). (5)
- (c) Given that y = 7 at x = 1, show that the particular solution of differential equation (I) can be written as

$$(3y-x)(y+3x) = 200.$$
 (5)(Total 14 marks)

4. A curve C has polar equation $r^2 = a^2 \cos 2\theta$, $0 \le \theta \le \frac{\pi}{4}$.

The line l is parallel to the initial line, and l is the tangent to C at above.

- (a) (i) Show that, for any point on C, $r^2 \sin^2 \theta$ can be expressed in terms of $\sin \theta$ and a only. (1)
- (ii) Hence, using differentiation, show that the polar coordinates of P are $\left(\frac{a}{\sqrt{2}}, \frac{\pi}{6}\right)$.(6)

The shaded region *R*, shown in the figure above, is bounded by *C*, the line *l* and the half-line with equation $\theta = \frac{\pi}{2}$. (b) Show that the area of *R* is $\frac{a^2}{16} (3\sqrt{3} - 4)$

5. Solve the equation

$$z^5 = i$$

giving your answers in the form $\cos \theta + i \sin \theta$.

(Total 5 marks)

7.

$$(1+2x)\frac{\mathrm{d}y}{\mathrm{d}x} = x+4y^2.$$

(a) Show that

$$(1+2x)\frac{d^2y}{dx^2} = 1+2(4y-1)\frac{dy}{dx}$$
 (2)

(b) Differentiate equation 1 with respect to x to obtain an equation involving

$$\frac{d^3}{dx^3}, \frac{d^2y}{dx^2}, \frac{dy}{dx}, \quad x \text{ and } y.$$
 (3)

Given that $y = \frac{1}{2}$ at x = 0,

- (c) find a series solution for y, in ascending powers of x, up to and including the term in x^3 .

 (6)(Total 11 marks)
- 8. In the Argand diagram the point P represents the complex number z.

Given that arg $\left(\frac{z-2i}{z+2}\right) = \frac{\pi}{2}$,

(a) sketch the locus of P,

(4)

(b) deduce the value of |z + 1 - i|.

(2)

The transformation T from the z-plane to the w-plane is defined by

$$w = \frac{2(1+i)}{z+2}, \quad z \neq -2$$

(c) Show that the locus of *P* in the *z*-plane is mapped to part of a straight line in the *w*-plane, and show this in an Argand diagram.

(6)(Total 12 marks)